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We characterize the sets F= {fq, .., f,,} of real continuous functions for which
F2={f,f;:0</,j<n} has less than 3n elements and the Chebyshev systems of the
form F? of degree less than 3n. This extends results of Granovsky and Passow and a
number-theoretic result of Freiman.  © 1989 Academic Press, Inc.

1. INTRODUCTION

In the theory of experimental designs the matrix M() = [|m,|7;_, plays
an important role, where m, = [, f(x) f(x)&(dx), fy, ... f,, (the regression
functions) are n+ 1 continuous functions on the compact space X, and &
(the design) is a probability measure on X. Statistical considerations direct
one’s interest to those & for which det M(¢) is maximal. Such measures are
called (D-)optimal. It can be easily seen that if the spectrum of ¢ concen-
trates at less than n+ 1 points, then det M(£)=0 [4, pp. 323-324]. Kiefer
and Wolfowitz [5] considered the sets of continuous functions
F = {f, -, [} for which there exists an optimal design ¢, whose spectrum
concentrates at nearly n + 1 points. The supporting hyperplane argument of
[4, pp.330-333] yields that if X={[q« ], if 1¢F>={f,f,:0<i, j<n},
and if {1} UF?is a Chebyshev system of minimal degree 2n + 2 then there
exists such &, with exactly n+ 1 points in its spectrum. More generally, if
1¢F? and if {1} UF? is a Chebyshev system of degree 2n+ s then there
exists an optimal design which concentrates at not more than
n+| (s +1)/2 ] points. Granovsky and Passow [3] have characterized all
sets F for which |F?| is minimal and all Chebyshev systems of the form F2
with minimal degree 2n + 1. A related result was obtained by Granovsky in
[2]. Here we extend the results of [37] to all sets F for which |F?| < 3n and
to Chebyshev systems of the form F? with degree less than 3x. This will be
done by applying a number-theoretic result of Freiman. As a consequence
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it will be possible to describe the Chebyshev systems of the form {1} UF?
with degree at most 3n, when 1¢F?

II. THE MAIN RESULTS

For a subset K of an abelian group we define 2K = {a+b:a, beK}.
Freiman has proved [1, pp.11-14] that if K= {a,, .., a,} is a set of
integers and if |2K|=2n+b with 1<b<n, then K is contained in an
arithmetical progression of length n+ b. Note that always [2K|>=2n+ 1.
We first generalize this to sets of real numbers:

PROPOSITION.  Let K= {ay, .., a,} be a set of real numbers and suppose
that a,=0, 1 =a, < --- <a,. If some a; is irrational then |2K| = 3n.

Proof. By induction on n. For n=2, K= {0, 1, a,} with a, irrational
and we have 2K = {0, 1, 2, a,, | + a,, 2a,}. Obviously, these are six distinct
numbers, Suppose now that n >3 and that the assertion is true for sets with
n elements. Let K be as above and let a, be the first irrational in K.

Case i. For some 1<j<n, (a;—1)/(a,—1) is irrational. In this case,
let K'={a,,..,a,} and let K"=(K'—1)/(a;—1). By the induction
hypothesis |2K’| =|2K"| =3n—3. Also, 2K\2K’ contains 0, 1, and a,.
Therefore [2K| = 3n.

Case ii. (a;—1)/(a,—1) is rational for j=1, .., n. Then for all such j,

a,—a, a,—1 a—-17 [a,—-1 a,_,—17""

an—an—l_[az’l az-l].[az“l a,—1 :,
is rational. In particular (a,— 1)/(a,—a, _,) is rational. Now assume that
a,/(a,—a,_,) is rational too. Then so is a,—a, _, and thus, is so a,—a;
for j=1, .., n. By taking j=1 and then j=1i we get a contradiction. Hence
a,/(a,—a,_,) is irrational. Set K" =(a,—K)/(a,—a,_,). Since n=3,
K" satisfies the requirements of Casei with j=n, so we obtain:
I2K| = |2K”| z 3n. This completes the proof.

The inequality |2K| = 3# in the proposition cannot be improved, as can
be seen by examining the set K={0,1,2,..,n—1, 2} for which
[2K| =3n.

From the proposition and Freiman’s cited result we obtain:

CoroOLLARY. Let K={ay, .., a,} be a set of real numbers such that
|2K|=2n+b, where 1<b<n. Then K is contained in an arithmetical
progression of length n+ b.
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This result will be generalized further in the following theorem, where we
consider the multiplicative structure of sets F = {f, ..., f,,} of real-valued
functions defined and continuous on a closed interval [«, §]. There, in
addition to the requirement that |[F?| =2n+ b, where 1 <b <n, one has to
assume, as in [3], that the set

A= {xe[a B1: fo(x), ... [,.{x) are nonzero, have distinct

absolute values, and |{|fo(x)], ..., [f,(x)| }?| =2n+ b} (1)

is large enough. Then F is contained in a short geometric progression:

THEOREM 1. Let F={f,, ..f,}, 1<b<n, and A be as above. If
|F?| =2n+b and if A has a discrete complement in [a, B, then there exists
a set S={sq, ..., 5, } and real-valued functions w and u such that:

(i
defined.
(ii
(iii

)
)
(iv) u is defined and continuous whenever w(x) # Q0.
)
)

) fdx)=w(x)u(x)% i=0,1, .., n, whenever the term on the right is

—

Sc{0,1,.,n+b—1}, 25| =2n+b, minS=0.

w is defined and continuous on [a, f].

=

For xe A, w(x)+#0 and u(x)#0, 1.
If w(xo) =0 then lim, _, . w(x)u(x)™*" exists and is finite.

(v

(v

—

Note that the converse of Theorem | also holds: if 4’ is a subset of
[o, B] with discrete complement, if 1 <b<n and if S= {s,, ..., 5,}, w and u
satisfy (ii)-(vi) (with A4 replaced by A’), then, for each 0 < i< n, wu* can be
(uniquely) extended to a continuous function f; on [a, f] such that
|F?|=2n+b, with F={f,, ... /., }.

We will use the following lemmas:

LEMMA 1. Let r22, let S={s,, .., 8,} be a set of integers, at least two
of which are consecutive, and suppose that 0=s,< --- <s,. If whenever
s;—s;=r, j=i+1, and if such a pair i, exists, then |28| > 3n.

Proof. For n=2 the assertion is clear. Suppose it holds for sets with a
smaller number of elements but fails for S. Denote S’ = {s,, .., s, _;}. By
considering, if necessary, s, —S instead of S, we may assume that S’ also
contains a gap of length r. Also, 8’ must contain at least two consecutive
integers, for otherwise s,=s,_,+ 1, and 0,5, ..., S, S, + S5 .0 285, S, 1 +
Sy« 25, are 3n distinct elements of 2S. By the induction hypothesis,
[28'] = 3n—3. Also, 2S\2S’ includes s,_,+s, and 2s,. Since |2S| < 3n,
28S=2S8"U {s,_| +5,,2s,}. We will show now that for all 0 <i<n,

s;=s, (mod s, —s,_) (2)
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For i=n, n— 1 this is clear. Suppose that i <n—2 and that (2) is valid for
i+1,..n Consider s;+s,. It is an element of 2S which is smaller than
s,_1+s, and 2s,. Hence, it belongs to 28, that is, there exist k, /<n—1
with s;+s5,=s,+s5, It can be easily seen that i<k,/ and obviously,
§;—S,=8,+s,—2s,. By our assumption s,,s,s, are all congruent
mod s, —s,_, and therefore (2) holds also for i. Since S contains two con-
secutive integers we must have s, =s,_, + 1. Now let i, ..., i,, be a list of all
0<i<n for which s, =s,+r. Then 2S contains the following elements:

805 v Siy _ 1
5, +S
Si+1+S
Siiv2t Sy, Si+3 1 Sps s 2Sn
Siz+l+sn~l, Si3+1+sn_1,... 5i,,,+1+sn~1-

The only elements of 2S which appear in this list more than once are
i+ 54150 S, + 5, 4 Which appear twice. Hence,

28| =i, +2(n+ 1) —m+(n—i,— 1)+ (m—1)=3n

contrary to the assumption on S.

Lemma 2. Let K={ay,..,a,} be a subset of Z®G where G is an
abelian group, with a,=(m;, ;) and my< --- <m,. If 12K|<3n then
oo, -y O, belong to a translate of some cyclic subgroup of G.

Proof. We use induction on n. For n=1 there is nothing to prove. For
n =2 suppose that |2K| < 3» but that «,, .., @, do not belong to any trans-
late of a cyclic subgroup of G. Set K’ = {aq, ... a,_,}.

Case i. aq, ..., &,_, belong to a translate H of a cyclic subgroup of G.
Then «,¢ H. 2K contains 2K', K'+ {a,}, and 2a,. Since m;<m, for
all 0<i<n, 2a,¢2K'u(K'+ {a,}). Also, if for some 0<ij,k<n,
a,+a;,=a,+a, then a,=a,+a,—a, € H which is a contradiction. Thus,
2K’ and K’ + {a,} are disjoint. Therefore, |2K|> [2K'| + |K' U {a,}| +1=>
2n—1+4+n+1=3n, contrary to the assumption.

Case ii. og,..,a,_; do not all belong to any translate of a cyclic
subgroup of G. By the induction hypothesis, |K'} > 3n—3. However,
2K\2K’ contains 2a, and a,+a, ,. Since |2K|<3n we obtain
2K=2K'v {2a,,a,+a,_;}. Consequently, for each 0<i<n—2 there
exist 0<j, k<n—1 such that g,4+a,=a;+a,, so a,=a;+a,—a, An
inductive argument yields that «,ea, + {«, _, —«,) (this clearly holds for
i=n—1 and i=n), and we get a contradiction.
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LemMma 3. If K= {aq, .., a,}, 0<[ag|< --- <la,l, if |[K*<3n, and if
log |a;| = q+ ps; where p>0 and S = {s,, .., s,,} is a set of integers, at least
two of which are consecutive, then for all 0<i, j<n:

s;=s,(mod 2)=>sga,=sga,.

Proof. The mapping 6(a,)=(s;, (1 —sga;)/2,(1—(—1)")/2) is an
isomorphism of K onto a subset of Z@Z,® 7, in the sense of [,
pp-2-4], where K is considered to be a subset of the multiplicative
group R\{0}. If [26(K) =|K?|<3n then Lemma2 yields that
{(sga;, (—1)"):i=0, .., n} has at most two elements. Since S contains at
least two consecutive integers, the conclusion of the lemma follows.

Proof of Theorem 1. For each xeA and for each 0<i<n set
g{x)=1log | fi(x)]. By the corollary we can find p(x)>0 and g(x) together
with a set S, = {s0(x), .., 5,(x)} of n+1 integers such that minS, =0,
maxS,<n+b—1, and gi(x)=q(x)+p(x)s,(x) for i=0,1,..,n Since
b<n, S, must contain a pair of consecutive integers. Since
IF2L = {1 /60, s | £u()I }2| =20+ b, we also have |{fy(x), .. f(x)}*] =
2n+b. Therefore by Lemma 3, sgfi(x) = sgf(x) whenever s,(x)=s,x)
(mod 2). Hence there exist &,(x)e {1, —1} and &,(x) € {0, 1} such that for
every 0<i<n, sgfi(x) =g, (x)(—1)2)s),

Now, for every x, x’ € A and every i, j, k, | we must have

|£i(x) 0] = 1 fio) Sl ) <> [ Sl x") fi(x ) =1 fil') Sl X))
and thus: s(x) + 5,(x) =5, (x)} + 5/x) <> 5,(x") + 5,(x") = 5,(x") + 5/(x").
Hence
$ix) = si(x) = 5x) = 5(x) = 5,(x") = 5, (x") =5(x") = 5,(x"). (3)
Now, as was previously observed, the set S, (and similarly S, ) contains at
least one pair of consecutive integers. Let & be the difference s,(x") —s,(x’)

where i, j satisfy s{(x)—s,(x)=1. According to (3), a is well defined. We
will prove now by induction on r > 1 that

Si(x)_sj(x)=r:>si(x,)_sj(x’)zra- 4)

The case r=1 is clear. Suppose that r=2 and that (4) is valid for
1,.,r—1 If s(x)—s,(x)=r then by Lemma 1 we may assume that there
exists k for which s,(x) <s,(x) <s,(x). By the induction hypothesis

$iX") = s5(x") = (5:4x") — 5, (x7)) + (sx(x") —5,(x"))
= (5x) = si(x)) @ + (s(x) — 5;(x))a = (5{x) = 5,(x))a
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and (4) is thus proved. Knowing (4) and knowing that S,. contains a pair
of consecutive integers we conclude that a=1. Also min S, =minS,. =0
s0 s{x)=s{x") for i=0,..,n Since x and x’ were arbitrary distinct
numbers in A, s;=s,/x) is independent of the choice of x. Therefore
gi{x)Y=q(x)+s,p(x) on A. It follows that for xe A4,

FARY= 1R SR ALx) = €7 g () (=)0 (5)

Let i, j, k be such that 5, =0, s; — s, = 1. Define w(x) = fi(x),
u(x)=f{x)/fi(x). For xeA (5) implies that w(x)u(x)"=f(x) for
[=0,..n If f(%) #0 while f(£)=0 then by (5), ¢/~ >8>0
in a neighbourhood of % and e*”—__ . _,0. Consequently,
P(X) =, L ¢4 — o0 and therefore u(x)=fx)/fi(x)=e" (= 1) > _ 0.
Hence we may extend u continuously to {xe [oc Bl wix)#0} and still
have w(x)u(x)"=/f/(x). (i}-(vi) can now be easily verified.

Remarks. (1) The inequality {2S/>3n in Lemmal cannot be
improved. To see this take K={0,1,.,r—2, r—1, 2r—1,
2r, .., 3r—3, 3r—2}. Also, the value 3» in Lemma 3 is the best possible as
can be seen by examining K= {1,2,4,..,2" ', —2"}.

(2) There exist sets F={fq, .., f,} as in Theorem 1 such that for
each representation fi(x)=w(x)u(x)" as in (1), u is discontinuous. For
example, consider [—2,2], b=1, and f(x)=x""‘(1+x) for i=0, .., n.
Since fi(1/2)=3"2" either u=f,/f; =x/(1+x) or u=f,/fo=1+ 1/x.

(3) The case b=1 of Theorem 1 was proved by Granovsky and
Passow [3]. The minimal case b=1 of the following theorem was also
proved by them. Note, however, that an inaccuracy occurs in their proof in
regard to the possibility that « is discontinuous. The example considered in
the previous remark shows that this can actually happen even when F? is a
Chebyshev system of degree 2n + 1.

DermNITION [6]. A set T={t,..,1,} of natural numbers, with
t,< --- <t,, has the alternating parity property (APP) if for each
1<ign—1,1t,,—1t, is odd.

THEOREM 2. Let F={f,, .., f,} be a set of real functions defined and
continuous on [a, B] and let 1 <b<n. If F? is Chebyshev system of degree
2n+ b then there exist a set S = {sq, ..., 5,} and real valued functions w and u
such that:

(i) fix)=w(x)u(x)% i=0, .., n, whenever the term on the right is
defined.
(i) S={0,1,.,n+b—1},|2S|=2n+b, minS=0, |S|=n+1.
(iii) w is continuous in [a, ] and vanishes at most once.
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(iv) u is defined and continuous whenever w # 0 and is injective.
(v) w(x)#£0 and |u(x)| #0, 1 on A.
(vi) If w(x)=0 then lim, , . |u(x)| =00 and lim _ , w(x)u(x)™*S
exists, is finite, and is nonzero.
(vii) If w(x)=0 and a<x<f then lim_ _, .- u(x)= —lim, _ .+ u(x)
(=%00)
(viil) If 2S does not have the APP, then u is one-signed and w(x)+#0
in (o, B).

Conversely, if S={sq, ..., 5,}, and w and u satisfy (ii)-(viii), then for each
0<i<n, wu” can be (uniquely) extended to a continuous function f; such that
F2={fy, ... [,}* is a Chebyshev system of degree 2n+b on [a, f].

Proof. Clearly if F? is a Chebyshev system of degree 2n+b then
[a, 1\ A is finite. Let S, w, u be as in Theorem 1. At each point x4 € [a, ]
at least one f; does not vanish. For if fy(x;)= --- =f,(x¢)=0 we could
choose 2n+ b —1 distinct points x, ..., X5,,,_, in A which are different
from x,, and then the following system of 2n + b — | linear equations in the
2n+ b unknowns {a,: g€ F*} would have a nontrivial solution

Y a,g(x)=0 (i=1,.,2n+b—1).

geF?

This would give a nontrivial combination of the functions of F? with 2n + b
solutions xg, Xy, ..., X5,,,_, in contradiction to F? being a Chebyshev
system of degree 2n + b.

Now suppose there were x,, x,€ [a, ], x; # x,, with w(x,), w(x,)#0
and u(x,)=u(x,). Then we could choose distinct x3, ..., x,,, , (other than
Xy, X,) in 4 and get a nontrivial solution for the linear system

Y bowi(x;) u(x;) =0 (i=2,.,2n+b).

te2S

But then, this would also hold for i=1, in contradiction to the
assumptions. Therefore, u is injective in {xe [a, f]: w(x)#0}. Suppose
w(x)=10. Since the functions f, .., f, do not all vanish at x and since
fi{x)y=1lim, _, ; w(x)u(x)" we must have

lim |u(x)| = oo.

X=X

Since u is injective this implies that the one-sided limits of u(x) as x
approaches X are co and — oo (unless, of course, ¥x=a or X =f). Again,
since u is injective and continuous, there is at most one such point. Now
F? is a Chebyshev system of degree 2n+5b if and only if
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det [|w(x)u(x)"llo<;j<m#0 for all distinct xq,..,x,, where
T={tg, . t,y} =28, m=2n+b— 1. Note that w? - u" is meaningful even at
x. If u is continuous then always w#0, so this is equivalent to
det [|u(x;)"llo<i j<m #0 for all distinct x,, ..., x,,. On the other hand, if u
has discontinuity at x then the above condition is equivalent to the non-
vanishing of det [[u(x,)"llo<; ;< and of det [u(x,)"|o<; ;<. for distinct
Xgs s X,y (#X). But this depends only on the range of u. Moreover, since
the determinant is a homogeneous function of its columns, we only need to
know whether u is bounded, whether it vanishes, and whether it changes
sign. Therefore our problem can be reduced to the vanishing properties of
Dy and D, where in general, for R={0=r,<---<r,},
Dg=det [ x7llo<:,<m> and this is equivalent to the problem of deciding
whether {x":reR} is a Chebyshev system on R or R\ {0}. Passow has
proved [6] that {x": re R} is a Chebyshev system on R if and only if R has
the APP. His proof can also be used to show that R has the APP if and
only if {x": re R} is a Chebyshev system on R\ {0} too. Now, if T does not
have the APP then by the above discussion {x': 7€ T} is not a Chebyshev
system on R\ {0} and therefore Dy vanishes for some distinct and nonzero
Xg, - Xpp. We obtain that ¥ must be one-signed in [« f]. The other
requirements now follow easily.

The opposite direction follows from the remark after the statement of
Theorem 1, from [6], and from the well-known fact that for distinct
positive xg, .., x,, and for 0=t,<t, < --- <t,, det |x}lo<;j<n #0 [4,
pp. 9-107.

Remark. When b is even, since min 2S=0 and max 2S are even, 28
does not have the APP.

I11. CHEBYSHEV SYSTEMS OF THE FORM {1} U F?

As was mentioned in the introduction, Chebyshev systems of the form
{1} UF? are also of particular interest. So suppose F = { f,, ... f,}, | ¢ F%,
and suppose that {1} UF? is a Chebyshev system on [«, f] with degree at
most 3n so that [«, ]\ A is finite, where A4 is as before. Since |F?| =2n+ b
with 1 < b <n, we obtain S, w, u as in Theorem 1(a). An argument similar
to the one used in the proof of Theorem 2 yields that f, ..., f,, can all vanish
at not more than a single point of [«, §]. Also, the number of points x in
[, B] for which there exists x’ # x with u(x)=u(x") and w(x), w(x')#0 is
finite. It can be easily seen that here » has at most two points x of discon-
tinuity: at one of them f, .., f,, vanish while at the other the one-sided
limits of u are oo and — oo (unless, of course, x =a or x=f).
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