Small Chebyshev Systems Made by Products*

Ido Efrat
School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel
Communicated by E. W. Cheney

Received January 28, 1986; revised January 8, 1987

Abstract

We characterize the sets $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}$ of real continuous functions for which $\mathbf{F}^{2}=\left\{f_{i} f_{j}: 0 \leqslant i, j \leqslant n\right\}$ has less than $3 n$ elements and the Chebyshev systems of the form \mathbf{F}^{2} of degree less than $3 n$. This extends results of Granovsky and Passow and a number-theoretic result of Freiman. (C) 1989 Academic Press, Inc.

I. Introduction

In the theory of experimental designs the matrix $M(\xi)=\left\|m_{i j}\right\|_{i, j=0}^{n}$ plays an important role, where $m_{i j}=\int_{x} f_{i}(x) f_{j}(x) \xi(d x), f_{0}, \ldots, f_{n}$ (the regression functions) are $n+1$ continuous functions on the compact space X, and ξ (the design) is a probability measure on X. Statistical considerations direct one's interest to those ξ for which $\operatorname{det} M(\xi)$ is maximal. Such measures are called (D-)optimal. It can be easily seen that if the spectrum of ξ concentrates at less than $n+1$ points, then $\operatorname{det} M(\xi)=0$ [4, pp. 323-324]. Kiefer and Wolfowitz [5] considered the sets of continuous functions $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}$ for which there exists an optimal design ξ_{0} whose spectrum concentrates at nearly $n+1$ points. The supporting hyperplane argument of [4, pp. 330-333] yields that if $X=[\alpha, \beta]$, if $1 \notin \mathbf{F}^{2}=\left\{f_{j} f_{j}: 0 \leqslant i, j \leqslant n\right\}$, and if $\{1\} \cup \mathbf{F}^{2}$ is a Chebyshev system of minimal degree $2 n+2$ then there exists such ξ_{0} with exactly $n+1$ points in its spectrum. More generally, if $1 \notin \mathbf{F}^{2}$ and if $\{1\} \cup \mathbf{F}^{2}$ is a Chebyshev system of degree $2 n+s$ then there exists an optimal design which concentrates at not more than $n+\lfloor(s+1) / 2\rfloor$ points. Granovsky and Passow [3] have characterized all sets \mathbf{F} for which $\left|\mathbf{F}^{2}\right|$ is minimal and all Chebyshev systems of the form \mathbf{F}^{2} with minimal degree $2 n+1$. A related result was obtained by Granovsky in [2]. Here we extend the results of [3] to all sets \mathbf{F} for which $\left|\mathbf{F}^{2}\right|<3 n$ and to Chebyshev systems of the form \mathbf{F}^{2} with degree less than $3 n$. This will be done by applying a number-theoretic result of Freiman. As a consequence

[^0]it will be possible to describe the Chebyshev systems of the form $\{1\} \cup \mathbf{F}^{2}$ with degree at most $3 n$, when $1 \notin \mathbf{F}^{2}$.

II. The Main Results

For a subset \mathbf{K} of an abelian group we define $2 \mathbf{K}=\{a+b: a, b \in \mathbf{K}\}$. Freiman has proved [1, pp. 11-14] that if $\mathbf{K}=\left\{a_{0}, \ldots, a_{n}\right\}$ is a set of integers and if $|2 \mathbf{K}|=2 n+b$ with $1 \leqslant b<n$, then \mathbf{K} is contained in an arithmetical progression of length $n+b$. Note that always $|2 K| \geqslant 2 n+1$. We first generalize this to sets of real numbers:

Proposition. Let $K=\left\{a_{0}, \ldots, a_{n}\right\}$ be a set of real numbers and suppose that $a_{0}=0,1=a_{1}<\cdots<a_{n}$. If some a_{i} is irrational then $|2 \mathbf{K}| \geqslant 3 n$.

Proof. By induction on n. For $n=2, \mathbf{K}=\left\{0,1, a_{2}\right\}$ with a_{2} irrational and we have $2 \mathbf{K}=\left\{0,1,2, a_{2}, 1+a_{2}, 2 a_{2}\right\}$. Obviously, these are six distinct numbers. Suppose now that $n \geqslant 3$ and that the assertion is true for sets with n elements. Let \mathbf{K} be as above and let a_{i} be the first irrational in \mathbf{K}.

Case i. For some $1 \leqslant j \leqslant n,\left(a_{j}-1\right) /\left(a_{2}-1\right)$ is irrational. In this case, let $\mathbf{K}^{\prime}=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ and let $\mathbf{K}^{\prime \prime}=\left(\mathbf{K}^{\prime}-1\right) /\left(a_{2}-1\right)$. By the induction hypothesis $\left|2 \mathbf{K}^{\prime}\right|=\left|2 \mathbf{K}^{\prime \prime}\right| \geqslant 3 n-3$. Also, $2 K \backslash 2 \mathbf{K}^{\prime}$ contains 0 , 1 , and a_{i}. Therefore $|2 K| \geqslant 3 n$.

Case ii. $\quad\left(a_{j}-1\right) /\left(a_{2}-1\right)$ is rational for $j=1, \ldots, n$. Then for all such j,

$$
\frac{a_{n}-a_{j}}{a_{n}-a_{n-1}}=\left[\frac{a_{n}-1}{a_{2}-1}-\frac{a_{j}-1}{a_{2}-1}\right] \cdot\left[\frac{a_{n}-1}{a_{2}-1}-\frac{a_{n-1}-1}{a_{2}-1}\right]^{-1}
$$

is rational. In particular $\left(a_{n}-1\right) /\left(a_{n}-a_{n-1}\right)$ is rational. Now assume that $a_{n} /\left(a_{n}-a_{n-1}\right)$ is rational too. Then so is $a_{n}-a_{n-1}$ and thus, is so $a_{n}-a_{j}$ for $j=1, \ldots, n$. By taking $j=1$ and then $j=i$ we get a contradiction. Hence $a_{n} /\left(a_{n}-a_{n-1}\right)$ is irrational. Set $\mathbf{K}^{\prime \prime \prime}=\left(a_{n}-\mathbf{K}\right) /\left(a_{n}-a_{n-1}\right)$. Since $n \geqslant 3$, $\mathbf{K}^{\prime \prime \prime}$ satisfies the requirements of Case i with $j=n$, so we obtain: $|2 K|=\left|2 \mathbf{K}^{\prime \prime \prime}\right| \geqslant 3 n$. This completes the proof.

The inequality $|2 \mathbf{K}| \geqslant 3 n$ in the proposition cannot be improved, as can be seen by examining the set $K=\{0,1,2, \ldots, n-1, \sqrt{2}\}$ for which $|2 \mathbf{K}|=3 n$.

From the proposition and Freiman's cited result we obtain:
Corollary. Let $\mathbf{K}=\left\{a_{0}, \ldots, a_{n}\right\}$ be a set of real numbers such that $|2 \mathbf{K}|=2 n+b$, where $1 \leqslant b<n$. Then \mathbf{K} is contained in an arithmetical progression of length $n+b$.

This result will be generalized further in the following theorem, where we consider the multiplicative structure of sets $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}$ of real-valued functions defined and continuous on a closed interval $[\alpha, \beta]$. There, in addition to the requirement that $\left|\mathbf{F}^{2}\right|=2 n+b$, where $1 \leqslant b<n$, one has to assume, as in [3], that the set

$$
\begin{align*}
A= & \left\{x \in[\alpha, \beta]: f_{0}(x), \ldots, f_{n}(x)\right. \text { are nonzero, have distinct } \\
& \left.\quad \text { absolute values, and }\left|\left\{\left|f_{0}(x)\right|, \ldots,\left|f_{n}(x)\right|\right\}^{2}\right|=2 n+b\right\} \tag{1}
\end{align*}
$$

is large enough. Then \mathbf{F} is contained in a short geometric progression:
Theorem 1. Let $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}, 1 \leqslant b<n$, and A be as above. If $\left|\mathbf{F}^{2}\right|=2 n+b$ and if A has a discrete complement in $[\alpha, \beta]$, then there exists a set $\mathbf{S}=\left\{s_{0}, \ldots, s_{n}\right\}$ and real-valued functions w and u such that:
(i) $f_{i}(x)=w(x) u(x)^{s_{i}}, i=0,1, \ldots, n$, whenever the term on the right is defined.
(ii) $\mathbf{S} \subseteq\{0,1, \ldots, n+b-1\},|2 \mathbf{S}|=2 n+b, \min \mathbf{S}=0$.
(iii) w is defined and continuous on $[\alpha, \beta]$.
(iv) u is defined and continuous whenever $w(x) \neq 0$.
(v) For $x \in A, w(x) \neq 0$ and $u(x) \neq 0,1$.
(vi) If $w\left(x_{0}\right)=0$ then $\lim _{x \rightarrow x_{0}} w(x) u(x)^{\max \mathrm{S}}$ exists and is finite.

Note that the converse of Theorem 1 also holds: if A^{\prime} is a subset of $[\alpha, \beta]$ with discrete complement, if $1 \leqslant b<n$ and if $\mathbf{S}=\left\{s_{0}, \ldots, s_{n}\right\}, w$ and u satisfy (ii)-(vi) (with A replaced by A^{\prime}), then, for each $0 \leqslant i \leqslant n$, wu ${ }^{s_{i}}$ can be (uniquely) extended to a continuous function f_{i} on $[\alpha, \beta]$ such that $\left|\mathbf{F}^{2}\right|=2 n+b$, with $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}$.
We will use the following lemmas:
Lemma 1. Let $r \geqslant 2$, let $\mathbf{S}=\left\{s_{0}, \ldots, s_{n}\right\}$ be a set of integers, at least two of which are consecutive, and suppose that $0=s_{0}<\cdots<s_{n}$. If whenever $s_{j}-s_{i}=r, j=i+1$, and if such a pair i, j exists, then $|2 \mathbf{S}| \geqslant 3 n$.

Proof. For $n=2$ the assertion is clear. Suppose it holds for sets with a smaller number of elements but fails for \mathbf{S}. Denote $\mathbf{S}^{\prime}=\left\{s_{0}, \ldots, s_{n-1}\right\}$. By considering, if necessary, $s_{n}-\mathbf{S}$ instead of \mathbf{S}, we may assume that \mathbf{S}^{\prime} also contains a gap of length r. Also, \mathbf{S}^{\prime} must contain at least two consecutive integers, for otherwise $s_{n}=s_{n-1}+1$, and $0, s_{1}, \ldots, s_{n}, s_{n}+s_{1}, \ldots, 2 s_{n}, s_{n-1}+$ $s_{1}, \ldots, 2 s_{n-1}$ are $3 n$ distinct elements of $2 \mathbf{S}$. By the induction hypothesis, $\left|2 \mathbf{S}^{\prime}\right| \geqslant 3 n-3$. Also, $2 \mathbf{S} \backslash 2 \mathbf{S}^{\prime}$ includes $s_{n-1}+s_{n}$ and $2 s_{n}$. Since $|2 \mathbf{S}|<3 n$, $2 \mathbf{S}=2 \mathbf{S}^{\prime} \cup\left\{s_{n-1}+s_{n}, 2 s_{n}\right\}$. We will show now that for all $0 \leqslant i \leqslant n$,

$$
\begin{equation*}
s_{i} \equiv s_{n}\left(\bmod s_{n}-s_{n-1}\right) . \tag{2}
\end{equation*}
$$

For $i=n, n-1$ this is clear. Suppose that $i \leqslant n-2$ and that (2) is valid for $i+1, \ldots, n$. Consider $s_{i}+s_{n}$. It is an element of $2 \mathbf{S}$ which is smaller than $s_{n-1}+s_{n}$ and $2 s_{n}$. Hence, it belongs to $2 \mathbf{S}^{\prime}$, that is, there exist $k, l \leqslant n-1$ with $s_{i}+s_{n}=s_{k}+s_{l}$. It can be easily seen that $i<k, l$ and obviously, $s_{i}-s_{n}=s_{k}+s_{l}-2 s_{n}$. By our assumption s_{k}, s_{l}, s_{n} are all congruent $\bmod s_{n}-s_{n-1}$, and therefore (2) holds also for i. Since \mathbf{S} contains two consecutive integers we must have $s_{n}=s_{n-1}+1$. Now let i_{1}, \ldots, i_{m} be a list of all $0 \leqslant i<n$ for which $s_{i+1}=s_{i}+r$. Then $2 S$ contains the following elements:

$$
\begin{gathered}
s_{0}, \ldots, s_{i_{1}-1} \\
s_{i_{1}}+\mathbf{S} \\
s_{i_{1}+1}+\mathbf{S} \\
s_{i_{1}+2}+s_{n}, \quad s_{i_{1}+3}+s_{n}, \ldots, 2 s_{n} \\
s_{i_{2}+1}+s_{n-1}, \quad s_{i_{3}+1}+s_{n-1}, \ldots, s_{i_{m}+1}+s_{n-1} .
\end{gathered}
$$

The only elements of $2 S$ which appear in this list more than once are $s_{i_{1}}+s_{i_{1}+1}, \ldots, s_{i_{1}}+s_{i_{m}+1}$ which appear twice. Hence,

$$
|2 \mathbf{S}| \geqslant i_{1}+2(n+1)-m+\left(n-i_{1}-1\right)+(m-1)=3 n
$$

contrary to the assumption on \mathbf{S}.
Lemma 2. Let $\mathbf{K}=\left\{a_{0}, \ldots, a_{n}\right\}$ be a subset of $\mathbb{Z} \oplus G$ where G is an abelian group, with $a_{i}=\left(m_{i}, \alpha_{i}\right)$ and $m_{0}<\cdots<m_{n}$. If $|2 \mathbf{K}|<3 n$ then $\alpha_{0}, \ldots, \alpha_{n}$ belong to a translate of some cyclic subgroup of G.

Proof. We use induction on n. For $n=1$ there is nothing to prove. For $n \geqslant 2$ suppose that $|2 \mathbf{K}|<3 n$ but that $\alpha_{0}, \ldots, \alpha_{n}$ do not belong to any translate of a cyclic subgroup of G. Set $\mathbf{K}^{\prime}=\left\{a_{0}, \ldots, a_{n-1}\right\}$.

Case i. $\quad \alpha_{0}, \ldots, \alpha_{n-1}$ belong to a translate H of a cyclic subgroup of G. Then $\alpha_{n} \notin H$. $2 \mathbf{K}$ contains $2 \mathbf{K}^{\prime}, \mathbf{K}^{\prime}+\left\{a_{n}\right\}$, and $2 a_{n}$. Since $m_{i}<m_{n}$ for all $0 \leqslant i<n, \quad 2 a_{n} \notin 2 \mathbf{K}^{\prime} \cup\left(\mathbf{K}^{\prime}+\left\{a_{n}\right\}\right)$. Also, if for some $0 \leqslant i, j, k<n$, $a_{i}+a_{j}=a_{k}+a_{n}$ then $\alpha_{n}=\alpha_{i}+\alpha_{j}-\alpha_{k} \in H$ which is a contradiction. Thus, $2 \mathbf{K}^{\prime}$ and $\mathbf{K}^{\prime}+\left\{a_{n}\right\}$ are disjoint. Therefore, $|2 \mathbf{K}| \geqslant\left|2 \mathbf{K}^{\prime}\right|+\left|\mathbf{K}^{\prime} \cup\left\{a_{n}\right\}\right|+1 \geqslant$ $2 n-1+n+1=3 n$, contrary to the assumption.

Case ii. $\alpha_{0}, \ldots, \alpha_{n-1}$ do not all belong to any translate of a cyclic subgroup of G. By the induction hypothesis, $\left|\mathbf{K}^{\prime}\right| \geqslant 3 n-3$. However, $2 \mathbf{K} \backslash 2 \mathbf{K}^{\prime}$ contains $2 a_{n}$ and $a_{n}+a_{n-1}$. Since $|2 \mathbf{K}|<3 n$ we obtain $2 \mathbf{K}=2 \mathbf{K}^{\prime} \cup\left\{2 a_{n}, a_{n}+a_{n-1}\right\}$. Consequently, for each $0 \leqslant i \leqslant n-2$ there exist $0 \leqslant j, k \leqslant n-1$ such that $a_{i}+a_{n}=a_{j}+a_{k}$, so $\alpha_{i}=\alpha_{j}+\alpha_{k}-\alpha_{n}$. An inductive argument yields that $\alpha_{i} \in \alpha_{n}+\left\langle\alpha_{n-1}-\alpha_{n}\right\rangle$ (this clearly holds for $i=n-1$ and $i=n$), and we get a contradiction.

Lemma 3. If $\mathbf{K}=\left\{a_{0}, \ldots, a_{n}\right\}, 0<\left|a_{0}\right|<\cdots<\left|a_{n}\right|$, if $\left|\mathbf{K}^{2}\right|<3 n$, and if $\log \left|a_{i}\right|=q+p s_{i}$ where $p>0$ and $\mathbf{S}=\left\{s_{0}, \ldots, s_{n}\right\}$ is a set of integers, at least two of which are consecutive, then for all $0 \leqslant i, j \leqslant n$:

$$
s_{i} \equiv s_{j}(\bmod 2) \Rightarrow \operatorname{sg} a_{i}=\operatorname{sg} a_{j}
$$

Proof. The mapping $\theta\left(a_{i}\right)=\left(s_{i},\left(1-\operatorname{sg} a_{i}\right) / 2,\left(1-(-1)^{s_{i}}\right) / 2\right)$ is an isomorphism of K onto a subset of $\mathbb{Z} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ in the sense of [1, pp. 2-4], where K is considered to be a subset of the multiplicative group $\mathbb{R} \backslash\{0\}$. If $|2 \theta(\mathbf{K})|=\left|\mathbf{K}^{2}\right|<3 n$ then Lemma 2 yields that $\left\{\left(\operatorname{sg} a_{i},(-1)^{s_{i}}\right): i=0, \ldots, n\right\}$ has at most two elements. Since S contains at least two consecutive integers, the conclusion of the lemma follows.

Proof of Theorem 1. For each $x \in A$ and for each $0 \leqslant i \leqslant n$ set $g_{i}(x)=\log \left|f_{i}(x)\right|$. By the corollary we can find $p(x)>0$ and $q(x)$ together with a set $\mathbf{S}_{x}=\left\{s_{0}(x), \ldots, s_{n}(x)\right\}$ of $n+1$ integers such that $\min \mathbf{S}_{x}=0$, $\max \mathrm{S}_{x} \leqslant n+b-1$, and $g_{i}(x)=q(x)+p(x) s_{i}(x)$ for $i=0,1, \ldots, n$. Since $b<n, \quad \mathbf{S}_{x}$ must contain a pair of consecutive integers. Since $\left|\mathbf{F}^{2}\right|=\left|\left\{\left|f_{0}(x)\right|, \ldots,\left|f_{n}(x)\right|\right\}^{2}\right|=2 n+b$, we also have $\left|\left\{f_{0}(x), \ldots, f_{n}(x)\right\}^{2}\right|=$ $2 n+b$. Therefore by Lemma $3, \operatorname{sg} f_{i}(x)=\operatorname{sg} f_{j}(x)$ whenever $s_{i}(x) \equiv s_{j}(x)$ $(\bmod 2)$. Hence there exist $\varepsilon_{1}(x) \in\{1,-1\}$ and $\varepsilon_{2}(x) \in\{0,1\}$ such that for every $0 \leqslant i \leqslant n, \operatorname{sg} f_{i}(x)=\varepsilon_{1}(x)(-1)^{\varepsilon_{2}(x) s_{i}(x)}$.

Now, for every $x, x^{\prime} \in A$ and every i, j, k, l we must have

$$
\left|f_{i}(x) f_{j}(x)\right|=\left|f_{k}(x) f_{l}(x)\right| \Leftrightarrow\left|f_{i}\left(x^{\prime}\right) f_{j}\left(x^{\prime}\right)\right|=\left|f_{k}\left(x^{\prime}\right) f_{l}\left(x^{\prime}\right)\right|
$$

and thus: $s_{i}(x)+s_{j}(x)=s_{k}(x)+s_{l}(x) \Leftrightarrow s_{i}\left(x^{\prime}\right)+s_{j}\left(x^{\prime}\right)=s_{k}\left(x^{\prime}\right)+s_{l}\left(x^{\prime}\right)$.
Hence

$$
\begin{equation*}
s_{i}(x)-s_{k}(x)=s_{l}(x)-s_{j}(x) \Leftrightarrow s_{i}\left(x^{\prime}\right)-s_{k}\left(x^{\prime}\right)=s_{l}\left(x^{\prime}\right)-s_{j}\left(x^{\prime}\right) \tag{3}
\end{equation*}
$$

Now, as was previously observed, the set \mathbf{S}_{x} (and similarly $\mathbf{S}_{x^{\prime}}$) contains at least one pair of consecutive integers. Let $a l$ be the difference $s_{i}\left(x^{\prime}\right)-s_{j}\left(x^{\prime}\right)$ where i, j satisfy $s_{i}(x)-s_{j}(x)=1$. According to (3), a is well defined. We will prove now by induction on $r \geqslant 1$ that

$$
\begin{equation*}
s_{i}(x)-s_{j}(x)=r \Rightarrow s_{i}\left(x^{\prime}\right)-s_{j}\left(x^{\prime}\right)=r a \tag{4}
\end{equation*}
$$

The case $r=1$ is clear. Suppose that $r \geqslant 2$ and that (4) is valid for $1, \ldots, r-1$. If $s_{i}(x)-s_{j}(x)=r$ then by Lemma 1 we may assume that there exists k for which $s_{j}(x)<s_{k}(x)<s_{i}(x)$. By the induction hypothesis

$$
\begin{aligned}
s_{i}\left(x^{\prime}\right)-s_{j}\left(x^{\prime}\right) & =\left(s_{i}\left(x^{\prime}\right)-s_{k}\left(x^{\prime}\right)\right)+\left(s_{k}\left(x^{\prime}\right)-s_{j}\left(x^{\prime}\right)\right) \\
& =\left(s_{i}(x)-s_{k}(x)\right) a+\left(s_{k}(x)-s_{j}(x)\right) a=\left(s_{i}(x)-s_{j}(x)\right) a
\end{aligned}
$$

and (4) is thus proved. Knowing (4) and knowing that $\mathbf{S}_{x^{\prime}}$ contains a pair of consecutive integers we conclude that $a=1$. Also $\min \mathbf{S}_{x}=\min \mathbf{S}_{x^{\prime}}=0$ so $s_{i}(x)=s_{i}\left(x^{\prime}\right)$ for $i=0, \ldots, n$. Since x and x^{\prime} were arbitrary distinct numbers in $A, s_{i}=s_{i}(x)$ is independent of the choice of x. Therefore $g_{i}(x)=q(x)+s_{i} p(x)$ on A. It follows that for $x \in A$,

$$
\begin{equation*}
f_{i}(x)=\left|f_{i}(x)\right| \cdot \operatorname{sg} f_{i}(x)=e^{q(x)+s_{i} p(x)} \cdot \varepsilon_{1}(x) \cdot(-1)^{s_{i} \varepsilon_{2}(x)} \tag{5}
\end{equation*}
$$

Let i, j, k be such that $s_{i}=0, s_{j}-s_{k}=1$. Define $w(x)=f_{i}(x)$, $u(x)=f_{j}(x) / f_{k}(x)$. For $x \in A$ (5) implies that $w(x) u(x)^{s t}=f_{l}(x)$ for $l=0, \ldots, n$. If $f_{i}(\bar{x}) \neq 0$ while $f_{k}(\bar{x})=0$ then by (5), $e^{q(x)}>\delta>0$ in a neighbourhood of \bar{x}, and $e^{s_{k} p(x)} \rightarrow_{x \rightarrow \bar{x}, x \in A} 0$. Consequently, $p(x) \rightarrow_{x \rightarrow \bar{x}, x \in A}-\infty$ and therefore $u(x)=f_{j}(x) / f_{k}(x)=e^{P(x)}(-1)^{\varepsilon_{2}(x)} \rightarrow_{x \rightarrow \bar{x}} 0$. Hence we may extend u continuously to $\{x \in[\alpha, \beta]: w(x) \neq 0\}$ and still have $w(x) u(x)^{s_{l}}=f_{l}(x)$. (i)-(vi) can now be easily verified.

Remarks. (1) The inequality $|2 S| \geqslant 3 n$ in Lemma 1 cannot be improved. To see this take $\mathbf{K}=\{0,1, \ldots, r-2, \quad r-1, \quad 2 r-1$, $2 r, \ldots, 3 r-3,3 r-2\}$. Also, the value $3 n$ in Lemma 3 is the best possible as can be seen by examining $K=\left\{1,2,4, \ldots, 2^{n-1},-2^{n}\right\}$.
(2) There exist sets $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}$ as in Theorem 1 such that for each representation $f_{i}(x)=w(x) u(x)^{s_{i}}$ as in (1), u is discontinuous. For example, consider $[-2,2], b=1$, and $f_{i}(x)=x^{n-i}(1+x)^{i}$ for $i=0, \ldots, n$. Since $f_{i}(1 / 2)=3^{i} / 2^{n}$ either $u=f_{0} / f_{1}=x /(1+x)$ or $u=f_{1} / f_{0}=1+1 / x$.
(3) The case $b=1$ of Theorem 1 was proved by Granovsky and Passow [3]. The minimal case $b=1$ of the following theorem was also proved by them. Note, however, that an inaccuracy occurs in their proof in regard to the possibility that u is discontinuous. The example considered in the previous remark shows that this can actually happen even when \mathbf{F}^{2} is a Chebyshev system of degree $2 n+1$.

Definition [6]. A set $\mathbf{T}=\left\{t_{0}, \ldots, t_{m}\right\}$ of natural numbers, with $t_{0}<\cdots<t_{n}$, has the alternating parity property (APP) if for each $1 \leqslant i \leqslant n-1, t_{i+1}-t_{i}$ is odd.

Theorem 2. Let $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}$ be a set of real functions defined and continuous on $[\alpha, \beta]$ and let $1 \leqslant b<n$. If \mathbf{F}^{2} is Chebyshev system of degree $2 n+b$ then there exist a set $\mathbf{S}=\left\{s_{0}, \ldots, s_{n}\right\}$ and real valued functions w and u such that:
(i) $f_{i}(x)=w(x) u(x)^{s_{i}}, i=0, \ldots, n$, whenever the term on the right is defined.
(ii) $\mathbf{S} \subseteq\{0,1, \ldots, n+b-1\},|2 \mathbf{S}|=2 n+b, \min \mathbf{S}=0,|\mathbf{S}|=n+1$.
(iii) w is continuous in $[\alpha, \beta]$ and vanishes at most once.
(iv) u is defined and continuous whenever $w \neq 0$ and is injective.
(v) $w(x) \neq 0$ and $|u(x)| \neq 0,1$ on A.
(vi) If $w(\bar{x})=0$ then $\lim _{x \rightarrow \bar{x}}|u(x)|=\infty$ and $\lim _{x \rightarrow \bar{x}} w(x) u(x)^{\max } \mathbf{s}$ exists, is finite, and is nonzero.
(vii) If $w(\bar{x})=0$ and $\alpha<\bar{x}<\beta$ then $\lim _{x \rightarrow \bar{x}^{-}} u(x)=-\lim _{x \rightarrow \bar{x}^{+}} u(x)$ ($= \pm \infty$).
(viii) If $2 \mathbf{S}$ does not have the APP, then u is one-signed and $w(x) \neq 0$ in (α, β).

Conversely, if $\mathbf{S}=\left\{s_{0}, \ldots, s_{n}\right\}$, and w and u satisfy (ii)-(viii), then for each $0 \leqslant i \leqslant n$, wu ${ }^{s_{i}}$ can be (uniquely) extended to a continuous function f_{i} such that $\mathbf{F}^{2}=\left\{f_{0}, \ldots, f_{n}\right\}^{2}$ is a Chebyshev system of degree $2 n+b$ on $[\alpha, \beta]$.

Proof. Clearly if \mathbf{F}^{2} is a Chebyshev system of degree $2 n+b$ then $[\alpha, \beta] \backslash A$ is finite. Let \mathbf{S}, w, u be as in Theorem 1. At each point $x_{0} \in[\alpha, \beta]$ at least one f_{i} does not vanish. For if $f_{0}\left(x_{0}\right)=\cdots=f_{n}\left(x_{0}\right)=0$ we could choose $2 n+b-1$ distinct points $x_{1}, \ldots, x_{2 n+b-1}$ in A which are different from x_{0}, and then the following system of $2 n+b-1$ linear equations in the $2 n+b$ unknowns $\left\{a_{g}: g \in \mathbf{F}^{2}\right\}$ would have a nontrivial solution

$$
\sum_{g \in \mathbf{F}^{2}} a_{g} g\left(x_{i}\right)=0 \quad(i=1, \ldots, 2 n+b-1) .
$$

This would give a nontrivial combination of the functions of \mathbf{F}^{2} with $2 n+b$ solutions $x_{0}, x_{1}, \ldots, x_{2 n+b-1}$ in contradiction to \mathbf{F}^{2} being a Chebyshev system of degree $2 n+b$.

Now suppose there were $x_{1}, x_{2} \in[\alpha, \beta], x_{1} \neq x_{2}$, with $w\left(x_{1}\right), w\left(x_{2}\right) \neq 0$ and $u\left(x_{1}\right)=u\left(x_{2}\right)$. Then we could choose distinct $x_{3}, \ldots, x_{2 n+b}$ (other than x_{1}, x_{2}) in A and get a nontrivial solution for the linear system

$$
\sum_{i \in 2 \mathrm{~S}} b_{i} w^{2}\left(x_{i}\right) u\left(x_{i}\right)^{2}=0 \quad(i=2, \ldots, 2 n+b) .
$$

But then, this would also hold for $i=1$, in contradiction to the assumptions. Therefore, u is injective in $\{x \in[\alpha, \beta]: w(x) \neq 0\}$. Suppose $w(\bar{x})=0$. Since the functions f_{0}, \ldots, f_{n} do not all vanish at \bar{x} and since $f_{i}(\bar{x})=\lim _{x \rightarrow \bar{x}} w(x) u(x)^{s_{i}}$ we must have

$$
\lim _{x \rightarrow \vec{x}}|u(x)|=\infty .
$$

Since u is injective this implies that the one-sided limits of $u(x)$ as x approaches \bar{x} are ∞ and $-\infty$ (unless, of course, $\bar{x}=\alpha$ or $\bar{x}=\beta$). Again, since u is injective and continuous, there is at most one such point. Now \mathbf{F}^{2} is a Chebyshev system of degree $2 n+b$ if and only if
$\operatorname{det}\left\|w^{2}\left(x_{i}\right) u\left(x_{i}\right)^{t_{j}}\right\|_{0 \leqslant i, j \leqslant m} \neq 0$ for all distinct x_{0}, \ldots, x_{m}, where $\mathbf{T}=\left\{t_{0}, \ldots, t_{m}\right\}=2 \mathbf{S}, m=2 n+b-1$. Note that $w^{2} \cdot u^{t_{j}}$ is meaningful even at \bar{x}. If u is continuous then always $w \neq 0$, so this is equivalent to $\operatorname{det}\left\|u\left(x_{i}\right)^{t}\right\|_{0 \leqslant i, j \leqslant m} \neq 0$ for all distinct x_{0}, \ldots, x_{m}. On the other hand, if u has discontinuity at \bar{x} then the above condition is equivalent to the nonvanishing of det $\left\|u\left(x_{i}\right)^{t_{j}}\right\|_{0 \leqslant i, j \leqslant m}$ and of det $\| u\left(x_{i}\right)^{t_{j} \|_{0 \leqslant i, j \leqslant m-1}}$ for distinct $x_{0}, \ldots, x_{m}(\neq \bar{x})$. But this depends only on the range of u. Moreover, since the determinant is a homogeneous function of its columns, we only need to know whether u is bounded, whether it vanishes, and whether it changes sign. Therefore our problem can be reduced to the vanishing properties of $D_{\mathbf{T}}$ and $D_{\mathbf{T} \backslash\left\{t_{m}\right\}}$ where in general, for $\mathbf{R}=\left\{0=r_{0}<\cdots<r_{m}\right\}$, $D_{\mathbf{R}}=\operatorname{det}\left\|x_{i}^{r_{j}}\right\|_{0 \leqslant i, j \leqslant m}$, and this is equivalent to the problem of deciding whether $\left\{x^{r}: r \in \mathbf{R}\right\}$ is a Chebyshev system on \mathbb{R} or $\mathbb{R} \backslash\{0\}$. Passow has proved [6] that $\left\{x^{r}: r \in \mathbf{R}\right\}$ is a Chebyshev system on \mathbb{R} if and only if \mathbf{R} has the APP. His proof can also be used to show that \mathbf{R} has the APP if and only if $\left\{x^{r}: r \in \mathbf{R}\right\}$ is a Chebyshev system on $\mathbb{R} \backslash\{0\}$ too. Now, if \mathbf{T} does not have the APP then by the above discussion $\left\{x^{t}: t \in \mathbf{T}\right\}$ is not a Chebyshev system on $\mathbb{R} \backslash\{0\}$ and therefore $D_{\mathbf{T}}$ vanishes for some distinct and nonzero x_{0}, \ldots, x_{m}. We obtain that u must be one-signed in $[\alpha \beta]$. The other requirements now follow easily.

The opposite direction follows from the remark after the statement of Theorem 1, from [6], and from the well-known fact that for distinct
 pp. 9-10].

Remark. When b is even, since $\min 2 S=0$ and $\max 2 S$ are even, $2 S$ does not have the APP.

III. Chebyshev Systems of the Form $\{1\} \cup \mathbf{F}^{2}$

As was mentioned in the introduction, Chebyshev systems of the form $\{1\} \cup \mathbf{F}^{2}$ are also of particular interest. So suppose $\mathbf{F}=\left\{f_{0}, \ldots, f_{n}\right\}, 1 \notin \mathbf{F}^{2}$, and suppose that $\{1\} \cup \mathbf{F}^{2}$ is a Chebyshev system on $[\alpha, \beta]$ with degree at most $3 n$ so that $[\alpha, \beta] \backslash A$ is finite, where A is as before. Since $\left|\mathbf{F}^{2}\right|=2 n+b$ with $1 \leqslant b<n$, we obtain \mathbf{S}, w, u as in Theorem 1(a). An argument similar to the one used in the proof of Theorem 2 yields that f_{0}, \ldots, f_{n} can all vanish at not more than a single point of $[\alpha, \beta]$. Also, the number of points x in $[\alpha, \beta]$ for which there exists $x^{\prime} \neq x$ with $u(x)=u\left(x^{\prime}\right)$ and $w(x), w\left(x^{\prime}\right) \neq 0$ is finite. It can be easily seen that here u has at most two points x of discontinuity: at one of them f_{0}, \ldots, f_{n} vanish while at the other the one-sided limits of u are ∞ and $-\infty$ (unless, of course, $x=\alpha$ or $x=\beta$).

Acknowledgments

I would like to express my gratitude to Professor G. A. Freiman and to Professor B. L. Granovsky for the fruitful discussions I had with them.

References

1. G. A. Freiman, "Foundations of a Structural Theory of Set Addition," Amer. Math. Soc., Providence, RI, 1973.
2. B. L. Granovsky, Moment spaces of minimal dimension, J. Approx. Theory 49 (1987), 390-397.
3. B. L. Granovsky and E. Passow, Chebyshev systems of minimal degree, SIam J. Math. Anal. 15 (1984), 166-169.
4. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
5. J. Kiefer and J. Wolfowitz, Optimum designs in regression problems, Ann. Math. Stat. 30 (1959), 271-294.
6. E. Passow, Alternating parity of Tchebysheff systems, J. Approx. Theory 9 (1973), 295-298.

[^0]: * The contents of this paper constitute the author's M.Sc. thesis written under the direction of Professor G. A. Freiman.

